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Abstract The notions of exhausters were introduced in (Demyanov, Exhauster of a posi-
tively homogeneous function, Optimization 45, 13–29 (1999)). These dual tools (upper and
lower exhausters) can be employed to describe optimality conditions and to find directions
of steepest ascent and descent for a very wide range of nonsmooth functions. What is also
important, exhausters enjoy a very good calculus (in the form of equalities). In the pres-
ent paper we review the constrained and unconstrained optimality conditions in terms of
exhausters, introduce necessary and sufficient conditions for the Lipschitzivity and Quasi-
differentiability, and also present some new results on relationships between exhausters and
other nonsmooth tools (such as the Clarke, Michel-Penot and Fréchet subdifferentials).

Keywords Positively homogeneous function · Optimality conditions · Upper and lower
exhausters · Proper and adjoint exhausters · Unconstrained optimization problems ·
Quasidifferentiability · The Michel-Penot subdifferential · The Clarke subdifferential ·
The Fréchet subdifferential

1 Introduction

The main tool in the study of smooth functions is the gradient. By means of the gradient
one is able, e.g., to get a first-order approximation of the function under study, to describe
optimality conditions, to find steepest ascent and descent directions, to construct numerical
methods. To solve similar problems in the nonsmooth case, usually, the notion of directional
derivative (or, if the function is not directionally differentiable, its some generalization, like
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the Dini and Hadamard upper and lower directional derivatives, the Clarke derivative, the
Michel-Penot derivative etc.) is employed. All these derivatives are positively homogeneous
functions of direction. For convex and max-type functions the directional derivative is convex
(and p.h.) and, by the Minkowski duality, optimality conditions can be stated in geometric
terms (see [4,22]). The steepest descent directions can also be derived in this case.

Many attempts were undertaken to find a convex tool in the nonconvex case. Among the
most popular ones it is necessary to mention, first of all, the Clarke generalized derivative and
the related Clarke subdifferential. However, it turns out that this tool, being very important
for some problems, is unable to provide a good approximation or a descent direction in the
essentially nonconvex case.

The idea to reduce the problem of minimizing an arbitrary function to a sequence of con-
vex problems was implemented by Pschenichnyi [21], who introduced the notions of upper
convex and lower concave approximations (u.c.a’s and l.c.a.’s). Rubinov [6] proposed to con-
sider exhaustive families of upper convex and lower concave approximations. Later some
new tools—upper and lower exhausters and convexificators—closely related to exhaustive
families of approximations were introduced. They represent dual objects and allow one to
reduce the original optimization problem to a sequence of convex optimization problems.

To explain the idea, note that (see Ref. [6]) if f : Rn → R is a given directionally dif-
ferentiable function and h(g) = f ′(x, g) is the derivative of the function f at a point x in a
direction g and if h is upper semicontinuous in g, then h(g) can be expressed as

h(g) = inf
C∈E∗ max

v∈C
(v, g),

and if h(g) = f ′(x, g) is lower semicontinuous in g, then h(g) can be written in the form

h(g) = sup
C∈E∗

min
w∈C

(w, g).

If h is continuous in g then both above representations are valid. The pair E = [E∗, E∗]
of families of convex compact sets is called a biexhauster, E∗ being an upper exhauster and
E∗ - a lower one. The notion of exhauster was introduced in Refs. [8,9,11].

It was shown there that if x∗ is a minimizer of f on Rn and an upper exhauster E∗ of f
at x∗ is known then a necessary condition for an unconstrained minimum is

0n ∈ C ∀C ∈ E∗. (1)

If x∗∗ is a maximizer of f on Rn and a lower exhauster E∗ of f at x∗∗ is known then a
necessary condition for an unconstrained maximum takes the form

0n ∈ C ∀C ∈ E∗. (2)

In Ref. [3] a survey of some results related to these new tools is given. It is shown there,
in particular, how to formulate optimality conditions in terms of proper exhausters and to
find steepest ascent and descent directions. Since conditions for a minimum are expressed in
terms of an upper exhauster and conditions for a maximum are described by means of a lower
exhauster, a conversion operator is required to convert upper exhausters into lower ones, and
vice versa. One of possible convertors is described in Ref. [3], and a modified convertor is
introduced in Ref. [24]. However, recently an attempt to describe optimality conditions for a
minimum in terms of a lower (not upper) exhauster and, symmetrically, to describe optimality
conditions for a maximum in terms of an upper (instead of lower) exhauster was undertaken
in Refs. [10] and [23]). We review these results for the constrained case and provide some
illustrative examples. The unconstrained case was discussed in Ref. [5].
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In the present paper some further problems related to exhausters are discussed. The paper
is organized as follows. In Sect.2 different directional derivatives are described, necessary
(as well as sufficient) optimality conditions are formulated in terms of directional deriva-
tives. Necessary and sufficient conditions for a minimum and a maximum in terms of proper
exhausters are stated in Sect. 3. Optimality conditions in terms of adjoint exhausters are for-
mulated in Sect. 4. Characterization of Lipschitzivity of a p.h. function is formulated in terms
of exhausters (Sect.5). Expressions for the Michel-Penot subdifferential and the Fréchet sub-
differential in terms of exhausters are obtained in Sects. 6 and 7. Quasidifferentiability and
a necessary and sufficient condition for a function to be quasidifferentiable are discussed in
Sects. 8 and 9. Section 10 contains concluding remarks.

2 Optimality conditions via directional derivatives

The notion of directional derivative and its generalizations play an essential role in Non-
smooth Analysis and Nondifferentiable Optimization. In this section we recall the defini-
tions of Dini and Hadamard (upper and lower) directional derivatives and state first-order
optimality conditions in terms of these derivatives.

Let f : X → R, X ⊂ Rn be an open set. The function f is called Dini directionally
differentiable (D-d.d.) at x ∈ X if for every g ∈ Rn there exists the finite limit

f ′
D(x, g) = lim

α↓0

1

α
[ f (x + αg) − f (x)]. (3)

The function f is called Hadamard directionally differentiable (H -d.d.) at x ∈ X if for
every g ∈ Rn there exists the finite limit

f ′
H (x, g) = lim

[α,g′]→[+0,g]
1

α
[ f (x + αg′) − f (x)]. (4)

Of course, if f is H -d.d. at x , then it is D-d.d. at x and f ′
D(x, g) = f ′

H (x, g). The inverse
statement is not true. The quantity f ′

D(x, g) ( f ′
H (x, g)) is called the Dini (Hadamard) deriv-

ative of f at x in the direction g.
Let x ∈ X, g ∈ Rn . The quantity

f ↑
D(x, g) = lim sup

α↓0

1

α
[ f (x + αg) − f (x)] (5)

is called the Dini upper derivative of f at x in the direction g.
The quantity

f ↓
D(x, g) = lim inf

α↓0

1

α
[ f (x + αg) − f (x)] (6)

is called the Dini lower derivative of f at x in the direction g.
The quantity

f ↑
H (x, g) = lim sup

[α,g′]→[+0,g]
1

α
[ f (x + αg′) − f (x)] (7)

is called the Hadamard upper derivative of f at x in the direction g. The quantity

f ↓
H (x, g) = lim inf

[α,g′]→[+0,g]
1

α
[ f (x + αg′) − f (x)] (8)
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is called the Hadamard lower derivative of f at x in the direction g. The limits in (5)–(8)
always exist (unlike the ones in (3) and (4)) but may be not finite.

If f is D-d.d. then f ↓
D(x, g) = f ↑

D(x, g) = f ′
D(x, g). Analogously, if f is H -d.d. then

f ↓
H (x, g) = f ↑

H (x, g) = f ′
H (x, g).

Now consider the problem of minimizing the function f on a set � ⊂ X . Fix x ∈ � and
introduce the following cone

K(x,�) = {g ∈ Rn | ∃ αk : αk ↓ 0, x + αk g ∈ � ∀ k}.
The set

�(x,�) = {g ∈ Rn | ∃ αk, gk : [αk, gk] → [+0, g], x + αk gk ∈ � ∀k}
is called the Bouligand cone to � at x . Both these cones are nonempty (they always contain
the zero element). The cone �(x,�) is closed while the cone K(x,�) is not necessarily
closed. If x ∈ � is an isolated point of � then both cones K(x,�) and �(x,�) contain only
the zero element. We say that g ∈ K∗(x,�) if g ∈ K(x,�) and

ρ(x + δg, l ∩ �) = o(δ, x, l),

where l = {x + αg | α ≥ 0},
o(δ, x, l)

δ
−−→
δ↓0

0

and ρ is the Hausdorff metric. It follows from the definition above that the cone K∗(x,�) is
not empty (it contains at least zero) and that K∗(x,�) ⊂ K(x,�).

We say that a closed cone � is a first-order uniform approximation (or a first-order uniform
conical approximation) of a set � near a point x ∈ � if

ρ(� ∩ Bδ(x), (x + �) ∩ Bδ(x)) = ox (δ),

where

ox (δ)

δ
−−→
δ↓0

0.

Here Bδ is a closed ball of radius δ ≥ 0 centered at x ∈ Rn . The notion of first-order
approximation was introduced in Ref. [6].

The following two Lemmas provide the first-order constrained optimality conditions in
terms of directional derivatives and approximating cones.

Lemma 1 Let f be locally Lipschitz around a point x∗ ∈ �. For the point x∗ to be a local
or global minimizer of the function f on the set � it is necessary that

f ↓
D(x∗, g) ≥ 0 ∀g ∈ K∗(x∗,�). (9)

If the cone �(x∗,�) is a first order uniform approximation of � near the point x∗ ∈ � then
for the point x∗ to be a local or global minimizer of the function f on the set � it is necessary
that

f ↓
H (x∗, g) ≥ 0 ∀g ∈ �(x∗,�). (10)

The condition

f ↓
H (x∗, g) > 0 ∀g ∈ �(x∗,�), g �= 0n (11)

is sufficient for x∗ to be a strict local minimizer of f on �.
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Lemma 2 Let f be locally Lipschitz around a point x∗∗ ∈ �. For the point x∗∗ to be a local
or global maximizer of the function f on the set � it is necessary that

f ↑
D(x∗∗, g) ≥ 0 ∀g ∈ K∗(x∗∗,�). (12)

If the cone �(x∗∗,�) is a first order uniform approximation of � near the point x∗∗ ∈ �

then for the point x∗∗ to be a local or global maximizer of the function f on the set � it is
necessary that

f ↑
H (x∗∗, g) ≥ 0 ∀g ∈ �(x∗∗,�). (13)

The condition

f ↑
H (x∗∗, g) > 0 ∀g ∈ �(x∗∗,�), g �= 0n (14)

is sufficient for x∗∗ to be a strict local maximizer of f on �.

A point x∗ ∈ X satisfying (9) (10) is called a Dini (Hadamard) inf-stationary point of f .
Note that all the functions defined by (3)–(8) are positively homogeneous (p.h.) of the

first degree as functions of g, hence, exhausters can be employed to study them.

3 Optimality conditions in terms of proper exhausters

It has already been observed (see Lemmas 1–2) that the first-order optimality conditions can
be expressed in terms of corresponding directional derivatives. Here these conditions are
reformulated in terms of proper exhausters.

An upper exhauster E∗(h) will be referred to as a proper exhauster for the minimization
problem, while a lower exhauster E∗(h) is called a proper exhauster for the maximization
problem.

Let C ⊂ Rn , by K (C) we denote the cone conjugate to C :

K (C) = {w ∈ Rn | (w, v) ≥ 0 ∀v ∈ C},
and put κ(C) = {w ∈ Rn | (w, v) > 0 ∀v ∈ C}. By N (C) we denote the normal cone of C :

N (C) = {w ∈ Rn | (w, v) ≤ 0 ∀v ∈ C},
and put η(C) = {w ∈ Rn | (w, v) < 0 ∀v ∈ C}.

Note that

κ(C) ⊂ int K (C), η(C) ⊂ int N (C),

but not necessarily κ(C) = int K (C) or η(C) = int N (C). The sets κ(C) and η(C) can even
be empty while K (C) and N (C) are always nonempty (since 0n ∈ K (C) and 0n ∈ N (C)).

Let � be a cone with the apex 0n and let

� = ∪ {A | A ∈ A}, (15)

where A is a family of convex cones with the apex 0n . Every cone can be represented in the
form (5) (for example, it is possible to take as A the family of all rays in �).

The following four lemmas (see Refs. [3] and [10]) demonstrate the constrained optimality
conditions in terms of proper exhausters.

123



76 J Glob Optim (2008) 40:71–85

Lemma 3 Let h : Rn → R be a p.h. function and assume that there exists an upper exhauster
E∗(h) of h. Then the following statements are equivalent:

(1) h(g) ≥ 0 ∀g ∈ �;

(2) C ∩ K (A) �= ∅ ∀C ∈ E∗(h), ∀A ∈ A;

(3) 0n ∈ [C − K (A)] ∀C ∈ E∗(h), ∀A ∈ A; (16)

(4) 0n ∈ L∗(h, �) := ∩{[C − K (A)] | C ∈ E∗(h), A ∈ A}.

(5) � ⊂ Rn \
⋃

C∈E∗(h)

η(C).

Lemma 4 Let h : Rn → R be a p.h. function and assume that there exists an upper exhauster
E∗(h) of h. Then the following statements are equivalent:

(1) h(g) > 0 ∀g ∈ �, g �= 0n;

(2) There exists a δ > 0 such that, for every C ∈ E∗(h) and

A ∈ A, a point VC A ∈ Rn exists such that

Bδ(VC A) ⊂ [C ∩ K (A)];

(3) There exists a δ > 0 such that Bδ ⊂ [C − K (A)] ∀C ∈ E∗(h), ∀A ∈ A;

(4) 0n ∈ int L∗(h, �).

Lemma 5 Let h : Rn → R be a p.h. function and assume that there exists a lower exhauster
E∗(h) of h. Then the following statements are equivalent:

(1) h(g) ≤ 0 ∀g ∈ �;

(2) (−C) ∩ K (A) �= ∅ ∀C ∈ E∗(h),∀A ∈ A;

(3) 0n ∈ [C + K (A)] ∀C ∈ E∗(h), ∀A ∈ A; (17)

(4) 0n ∈ L∗(h, �) := ∩{[C + K (A)] | C ∈ E∗(h), A ∈ A}.

(5) � ⊂ Rn \
⋃

C∈E∗(h)

κ(C).

Lemma 6 Let h : Rn → R be a p.h. function and assume that there exists a lower exhauster
E∗(h) of h. Then the following statements are equivalent:

(1) h(g) < 0 ∀g ∈ �, g �= 0n;

(2) There exists a δ > 0 such that, for every C ∈ E∗(h) and

A ∈ A, a point VC A ∈ Rn exists such that
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Bδ(VC A) ⊂ [−C ∩ K (A)];

(3) There exists a δ > 0 such that

Bδ ⊂ [C + K (A)] ∀C ∈ E∗(h), ∀A ∈ A;

(4) 0n ∈ int L∗(h, �).

Remark 1 Note that to check the condition (5) in Lemmas 3 and 5 one does not need to find
a decomposition of �, however it is necessary to construct the sets κ(C) for all C ∈ E∗(h)

for a lower exhauster or η(C) for an upper one.

4 Optimality conditions in terms of adjoint exhausters

Let � be a cone in Rn . Then the following statements are valid.

Lemma 7 Let h : Rn → R be a p.h. function and assume that there exists an upper exhauster
E∗(h) of h. Then the following statements are equivalent.

(1) h(g) < 0 ∀g ∈ � \ {0n};

(2) {� \ {0n}} ⊂
⋃

C∈E∗(h)

η(C).

Lemma 8 Let h : Rn → R be a p.h. function and assume that there exists an upper exhauster
E∗(h) of h. If

� ⊂
⋃

C∈E∗(h)

N (C),

then

h(g) ≤ 0 ∀g ∈ �.

Moreover, if the function h(g) can be represented in the form

h(g) = min
C∈E∗ max

v∈C
(v, g), (18)

where the family E∗ is an upper exhauster of h, then the conditions (1) and (2) are equivalent.

Lemma 9 Let h : Rn → R be a p.h. function and assume that there exists a lower exhauster
E∗(h) of h. Then the following statements are equivalent:

(1) h(g) > 0 ∀g ∈ � \ {0n};

(2) � \ {0n} ⊂
⋃

C∈E∗(h)

κ(C).
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Lemma 10 Let h : Rn → R be a p.h. function and assume that there exists a lower exhauster
E∗(h) of h. If

(1) � ⊂
⋃

C∈E∗(h)

K (C), (19)

then

(2) h(g) ≥ 0 ∀g ∈ �.

Moreover, if the function h(g) can be represented in the form

h(g) = max
C∈E∗

min
v∈C

(v, g), (20)

where E∗ is a lower exhauster of h, then the conditions (1) and (2) are equivalent.

Remark 2 It turns out that via proper exhausters it is possible to construct steepest ascent
and descent directions (see, e.g. [3]). Making use of adjoint exhausters, one is able to find
some ascent and descent directions. The problem of constructing steepest ascent and descent
directions by means of adjoint exhausters is still open.

5 Necessary and sufficient conditions for Lipschitzivity in terms of exhausters

Theorem 1 Let h : Rn → R be a p.h. function. For the function h to be Lipschitz it is neces-
sary and sufficient that there exist a totally bounded upper exhauster and a totally bounded
lower exhauster.

Proof Necessity. In Ref. [1] M.Castellani proved that if h is Lipschitz then h can be written
in the forms

h(g) = min
C∈E∗ max

v∈C
(v, g) ∀g ∈ Rn (21)

and

h(g) = max
C∈E∗

min
w∈C

(w, g) ∀g ∈ Rn, (22)

where the families of sets E∗ and E∗ are totally bounded. Remind that a family of sets E is
totally bounded if there exists a ball B in Rn such that C ⊂ B ∀C ∈ E .

The relation (21) implies that E∗ is an upper exhauster of h and E∗ is totally bounded.
The relation (22) implies that E∗ is a lower exhauster of h and E∗ is totally bounded.

Sufficiency. The Lipschitzivity of h is obvious from the representations (21), (22) and the
total boundedness of the families of sets E∗ and E∗.

6 The Michel-Penot subdifferential in terms of exhausters

Assume that h is p.h. and Lipschitz. As was indicated above, h can be represented in the
forms (21) and (22). First consider the representation (21). Put

Q(g) = {C ∈ E∗ | h(g) = max
v∈C

(v, g)}, (23)

hC (g) = max
v∈C

(v, g), (24)
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Vg(C) = {w ∈ C | (w, g) = hC (g) = max
v∈C

(v, g)}. (25)

Then

h(g) = min
C∈E∗ max

v∈C
(v, g) = min

C∈Q(g)
max

w∈Vg(C)
(w, g) = min

w∈E∗
g

(w, g) ∀g ∈ Rn, (26)

where

E∗
g = cl co{Vg(C) | C ∈ Q(g)}. (27)

Now let us consider the polyhedral case: Assume that the family E∗ contains a finite
number of sets and every set C ∈ E∗ is a polyhedron. Then the function h is directionally
differentiable at every point g ∈ R∗ and

h′(g, q) = min
C∈Q(g)

max
w∈Vg(C)

(w, q). (28)

Furthermore, for almost all g the sets Q(g) and Vg(C) are singletons, and, hence, the set E∗
g

is also a singleton:

E∗
g = {wg}.

It means that the function h is almost everywhere differentiable(the differentiability follows
also from the Lipschitzivity of h) and therefore for almost every g there exists the gradient
h′(g) of h and

h′(g) = wg. (29)

By T (h) we denote the set of points of differentiability of h. The set T (h) is a set of full
measure and obviously 0n �∈ T (h).

It is well known (see Ref. [2]) that the set

∂Cl h(0n) = cl co{wg | g ∈ T (h)} (30)

is the Clarke subdifferential of h at 0n . Now one is able to express the Clarke subdifferential
of h at 0n constructively via points wg .

If a function f : Rn → R is Lipschitz and directionally differentiable at x ∈ Rn and h(g)

is its directional derivative at the point x then ∂Cl h(0n) is the Michel-Penot subdifferential
(see Ref. [15]) of the function f at the point x (called also “the small subdifferential” [13]):

∂M P f (x) = ∂Cl h(0n) = cl co{wg | g ∈ T (h)} ⊂ ∂Cl f (x). (31)

Hence, the Michel-Penot subdifferential of f at x can be constructed by means of the upper
exhauster of the directional derivative h(g) = f ′(x, g). In some cases (see Ref. [7]) the
Michel-Penot subdifferential coincides with the Clarke subdifferential.

Remark 3 In the nonpolyhedral case similar results are valid under some additional condi-
tion.

Remark 4 Analogous results (with proper alterations) can be formulated if one uses the
representation (22) instead of (21). In this case the lower exhauster E∗ will be employed.
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7 The Fréchet subdifferential in terms of upper exhausters

For a function ϕ : Rn → R the Fréchet subdifferential of ϕ at x̄ can be defined as follows
(see Refs. [14,17]):

∂̂ϕ(x̄) :=
{
v ∈ Rn

∣∣∣ lim inf
x→x̄

ϕ(x) − ϕ(x̄) − (v, x − x̄)

||x − x̄ || ≥ 0
}
.

Let h : Rn → R be a p.h. and upper semicontinuous function. It is not difficult to observe
that in this case the Fréchet subdifferential of the function h at zero is

∂̂h(0n) = {
v ∈ Rn | h(x) − (v, x) ≥ 0 ∀x ∈ Rn}

. (32)

Theorem 2 Let E∗ be an upper exhauster of a p.h. function h : Rn → R. Then
⋂

C∈E∗
C = ∂̂h, (33)

where ∂̂h is the Fréchet subdifferential of h at 0n.

Proof Denote E = ⋂
C∈E∗

C . Take an arbitrary v0 ∈ E . It follows from the definition of an

upper exhauster that

(v0, x) ≤ h(x) ∀x ∈ Rn .

Hence, v0 ∈ ∂̂h. Due to the arbitrariness of v0 one gets

E ⊆ ∂̂h. (34)

Consider now any v0 ∈ ∂̂h. The relation (34) yields

h(x) ≥ (v0, x) ∀x ∈ Rn . (35)

Suppose now that there exists C0 ∈ E∗ such that v0 /∈ C0. Then by the separation theorem
(see, e.g., [22]) there exists x0 ∈ Rn such that

(x0, v0) > max
v∈C0

(x0, v) ≥ h(x0),

which contradicts (35). Hence, v0 ∈ C for every C ∈ E∗ and due to the arbitrariness of v0

one concludes

∂̂h ⊆ E . (36)

Now (34) and (36) yield (33).

Corollary 1 Let E∗
1 and E∗

2 be two upper exhausters of the same p.h. function h : Rn → R.
Then

⋂

C∈E∗
1

C =
⋂

C∈E∗
2

C.

Proof follows from the uniqueness of the Fréchet subdifferential and Theorem 2.

The following example illustrates the results obtained in Theorem 2.
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Fig. 1 Example 1: an upper exhauster and the Fréchet subdifferential

Example 1 Consider the function h : R2 → R,

h(x1, x2) = min
{ 1√

2
(|x1| + |x2|), max{|x1|, |x2|}

}
.

It is not difficult to see that E∗ = {C1, C2}, where

C1 = co {(0, 1), (0,−1), (−1, 0), (1, 0)};

C2 = co

{(
1√
2
,

1√
2

)
,

(
− 1√

2
,

1√
2

)
,

(
1√
2
,− 1√

2

)
,

(
− 1√

2
,− 1√

2

)}
,

is an upper exhauster of h (see Fig. 1). Now one can easily obtain the Fréchet subdifferential
of h at zero by calculating the intersection of C1 and C2. We do not need to use a more
complicated expression (32) (in Fig. 1 the set ∂̂h(0n) = D is indicated by the solid line).

Remark 5 Let a p.h. function h(g) be the directional derivative of a function f : Rn → R
at a point x : h(g) = f ′(x, g). It follows from Theorem 2 that the condition (2) in Lemma 3
is equivalent to the condition

0 ∈ ∂̂h(0n), (37)

which is in turn the well-known necessary condition for the unconstrained minima of f
(see, for example, [16]). While necessary conditions for a minimum in terms of exhausters
coincide with the necessary conditions via the Fréchet subdifferential, they are constructive
in the sense that one is able to find steepest descent directions via upper exhauster, but not
via Fréchet subdifferential (which in many cases is even the empty set), when the necessary
conditions for a minimum are not satisfied.

To illustrate the above remark, consider the following example.

Example 2 Let h(x) = min{max{y,−2x − y}, max{y, 2x − y}}. Its upper exhauster is
E∗ = {C1, C2}, where C1 = {(0, 1), (−2,−1)}, C2 = {(0, 1), (2,−1)} (see Fig. 2). It is
easy to see that ∂̂h(0n) = C1 ∩ C2 = {(0, 1)}, and the necessary condition for the min-
ima is not satisfied. Hence, we can find directions of steepest descent using the techniques
described in Ref. [3], that is, for every C ∈ E∗ find dC = minv∈C ||v|| = ||vC || > 0 and
take gC = −vC/||vC ||. Then if C∗ ∈ E∗ is such that g(C∗) = supC∈E∗ d(C), the direction
gC∗ is a steepest descent direction. In our case there exist two steepest descent directions:
g1 = (1/

√
2,−1/

√
2) and g2 = (−1/

√
2,−1/

√
2). Note that we cannot obtain these direc-

tion using the Fréchet subdifferential. Indeed, since ∂̂h(0n) = {(0, 1)}, then (0, 1) is the
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Fig. 2 Example 2

nearest point of ∂̂h(0n) to the origin. However, the direction g = (0,−1) is not a steepest
descent direction.

Note that symmetrically to the Fréchet subdifferential it is also possible to define the
corresponding Fréchet upper subdifferential:

∂̂+ϕ(x̄) :=
{
v ∈ Rn

∣∣∣ lim sup
x→x̄

ϕ(x) − ϕ(x̄) − (v, x − x̄)

||x − x̄ || ≤ 0
}
,

which for a positively homogeneous function h : Rn → R at zero takes the following form:

∂̂+h(0n) = {
v ∈ Rn | h(x) − (v, x) ≤ 0 ∀x ∈ Rn}

.

Then the similar results can be stated about the upper Fréchet subdifferential and a lower
exhauster.

Theorem 3 Let E∗ be a lower exhauster of a p.h. function h : Rn → R. Then
⋂

C∈E∗
C = ∂̂+h(0n), (38)

where ∂̂h is the Fréchet subdifferential of h at 0n.

Corollary 2 Let E1∗ and E2∗ be two lower exhausters of the same p.h. function h : Rn → R.
Then

⋂

C∈E1∗

C =
⋂

C∈E2∗

C.

8 Quasidifferentiable functions

It follows from the aforesaid that the problems of verifying necessary and/or sufficient opti-
mality conditions and computing descent, steepest descent, ascent, and steepest ascent direc-
tions of some (generally speaking nondifferentiable) function are reduced to solving some
geometric problems and finding nearest points to some convex sets. To employ the above
results it is required to be able to construct the corresponding exhausters. For some classes
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of functions such tools are available. For example, if f is a quasidifferentiable function then
[7] its directional derivative at a point x is represented as

f ′(x, g) = max
v∈∂ f (x)

(v, g) + min
w∈∂ f (x)

(w, g), (39)

where ∂ f (x), ∂ f (x) ⊂ Rn are compact convex sets. It is clear from (39) that

f ′(x, g) = min
w∈∂ f (x)

max
v∈w+∂ f (x)

(v, g) = max
v∈∂ f (x)

min
w∈v+∂ f (x)

(w, g).

Hence, for the function h(g) = f ′(x, g) we get

E∗(h) = {C = w + ∂ f (x)
∣∣ w ∈ ∂ f (x)}, (40)

E∗(h) = {C = v + ∂ f (x)
∣∣ v ∈ ∂ f (x)}. (41)

Condition (1) and relation (40) (applied to the function h(g) = f ′(x∗, g)) provide the
following necessary condition for a minimum of a quasidifferentiable function: 0n ∈ w +
∂ f (x∗) ∀w ∈ ∂ f (x∗), which is equivalent to (see [7,20]) −∂ f (x∗) ⊂ ∂ f (x∗).

Condition (2) and relation (41) (applied to the function h(g) = f ′(x∗∗, g)) provide the
following necessary condition for a maximum of a quasidifferentiable function: 0n ∈
v + ∂ f (x∗∗) ∀v ∈ ∂ f (x∗∗), which is equivalent to (see [7,20]) −∂ f (x∗∗) ⊂ ∂ f (x∗∗).

9 A necessary and sufficient condition for quasidifferentiability in terms of exhausters

Let E ∈ 2Rn
be a family of convex sets in Rn . We say that the family E is of translation type

if there exists a convex set C0 ⊂ Rn such that for every C ∈ E there is a point wC ∈ Rn

such that C = C0 + wC .
A p.h. function h(g) will be referred to as quasidifferentiable if there exist convex compact

sets A ⊂ Rn and B ⊂ Rn such that

h(g) = max
v∈A

(v, g) + min
w∈B

(w, g). (42)

It follows from Sect. 8 that the directional derivative of a quasidifferentiable function (as
a function of direction) is p.h. and quasidifferentiable and both the upper exhauster and the
lower one are of translation type and totally bounded. The following characterization of a
quasidifferentiable p.h. function is valid.

Theorem 4 Let h : Rn → R be a p.h. function. For the function h to be quasidifferentiable it
is necessary and sufficient that there exist a totally bounded translation-type upper exhauster
and a totally bounded translation-type lower exhauster.

Proof Sufficiency follows from the arguments in Sect. 8.
Necessity. We consider only the case of the upper exhauster. Let E∗ be an upper exhauster

of h and there exists C0 ⊂ Rn such that for every C ∈ E∗ one can find wC ∈ Rn such that
C = C0 + wC . Then

h(g) = min
C∈E∗ max

v∈C
(v, g) = min

C∈E∗ max
v∈[C0+wC ](v, g) = min

C∈E∗{max
v∈C0

(v, g) + (wC , g)}
= max

v∈C0
(v, g) + min

C∈E∗(wC , g) ∀g ∈ Rn . (43)
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It follows from (43) that

h(g) = max
v∈A

(v, g) + min
w∈B

(w, g) ∀g ∈ Rn (44)

where A = C0, B = co{w ∈ Rn | w = wC , C ∈ E∗}. The representation (44) implies the
quasidifferentiability of h.

Remark 6 It follows from Theorem 1 that a quasidifferentiable p.h. function is Lipschitz.
An example of a p.h. function which is not Lipschitz (and, hence, is not quasidifferentiable)
was given by Glover et al. [12].

10 Concluding remarks

Remark 7 In the current paper we have reviewed some properties of exhausters, including
necessary and sufficient conditions for an extremum and the ways to find steepest ascent and
descent directions. It can easily be seen from the above discussion, that almost every function
of practical interest can be studied by means of upper and lower exhausters. Moreover, the
problems of checking extremal conditions and finding steepest directions are reduced to a
sequence of convex problems, which, in turn, can be easily solved by existing (convex) tools.
The problem of constructing exhausters of an arbitrary function remains important. Some
elements of the calculus of exhausters were introduced in [3]. Their application to constrained
optimization problems is discussed in [25].

Remark 8 Necessary and sufficient conditions for Lipschitzivity and quasidifferentiability
in terms of exhausters were introduced.

Remark 9 It was shown in Sects. 6 and 7 that exhausters are closely related to other non-
smooth tools, such as Michel-Penot, Clarke and Fréchet subdifferentials. Note that the dis-
covered relations are all in the form of equalities.

Remark 10 Since exhausters are not uniquely defined, the problem of minimality arises (like
the similar problem with quasidifferentials [18,19]). The problems of existence, uniqueness
and construction of minimal exhausters are still open.
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